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DETECTING OUTLIERS IN MICROMETEOROLOGICAL
TIME SERIES

Dr. Rudy S. Tan*

1. Introduction

The collection of large masses of fnicrometeorological time
series by completely automatic systems now used in air pollution
monitoring has raised new problems in statistical methodology,
particularly .on methods to screen and improve the quality of
the data. It is a well-known fact that no amount of sophisticated
statistical computing can make the result worth the time and effort
if the data are of dubious quality. Unfortunately, the automation
of data acquisition has made the problem of obtaining good quality
micrometeorological time series much more complex. The reasons
appear to be not only the enormously large number of variates and
observations that can be recorded, but also the various technical
factors affecting the computerized systems. It is rare that all instru­
ments in a large monitoring network function continuously for over
a period of three days. Furthermore, although instrument per­
formance in recent years has improved considerably, most instru­
ments have drift characteristics requiring very frequent calibrations.
In view of the high cost involved in setting up and maintaining an
automatic continuous monitoring system, data quality control
methods have to be developed in order to make maximum use of the
available observations and also to assess the performance of the
instruments, e.g., to determine if the instrument should be checked
prior to its normal scheduled maintenance. The solution to the
problem of data quality control for micrometeorological time
series is not simple since the measurements are dependent. Other­
wise, quality control and editing methods used in sample surveys
(see Naus, 1975) are readily applicable.

*The author is an associate professor, Statistical Center, University of the Philippines.
This paper is from a Chapter of the author's doctoral dissertion completed at North Carolina
State University, U.S.A.
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In general, the quality of micrometeorological time series col­

lected by completely automatic systems is affected by gross errors,
outliers, and systematic errors. Gross errors, as distinguished from
random measurement errors, are obviously incorrect observations.
These should be discarded since they can adversely affect the esti­
mates of mean and variance of the time series and may result in
errors when making critical decisions like shutting down or cancel­
ling certain plant operations under certain atmospheric conditions.
Severe weather is the most frequent cause of gross errors. Lightning,
hail, and strong winds accompanying a heavy thunderstorm can
damage the instruments mounted on towers. Furthermore,
electrical "surges" during thunderstorm activities are the common
cause of noise burst in the communication link between the instru­
ments and electronic processing equipment resulting in garbled data.
During cold weather, thick ice accumulation on the instruments can
make them either inoperable or record bad data. Fortunately, gross
errors are. easy to detect and few deterministic tests usually would be
able to screen them out.

"Outliers" are defined as values which appear to depart markedly
from the rest of the data. They are often called "stragglers", "sports",
or "mavericks" in the literature (Anscom be, 1960). Spectral analysis
which is now widely used in the physical sciences is very sensitive
to outliers. An outlying observation can introduce a spectral peak
in the frequency domain and several can make the spectrum appear
multipeaked. When many outliers are present, it may be impossible
to obtain any meaningful analysis of the spectrum of interest (see
Koopmans, 1974, Section 9.5). Outliers may also be caused by
severe weather, by occasional gusts especially during periods of
light winds, and by certain atmospheric phenomena like breaking
gravity waves. Even flying objects like birds when passing very close
to the measuring instrument are likely to cause some observations
to go wild momentarily and introduce outliers. Unfortunately, they
are difficult to detect because of the highly subjective nature of
outlier rejection procedures (Collett and lewis, 1977). If questionable
values are really bad observations, then they should be discarded
and imputed by some means before any analysis of the data is
undertaken. However, if they are just extreme values, a decision
must be made as to whether or not to include them in the analysis.
In the later case, extreme caution must be exercised when employ­
ing any criterion for rejecting outliers. It may happen that the out-
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lying observations occurred naturally, and only by including them
in the analysis can the process under study be fully described.

Finally, systematic errors are those which cause the measure­
ments to differ from the "true" values in a constant or regular
manner. They are generally much more difficult to detect than
outliers even if repeated observations are taken. Averages based on
data subject to systematic errors will normally be biased. There are
various causes of systematic errors in micrometeorological time
series. Although proper calibration is a necessary prerequisite before
undertaking any measurement, the instrument eventually looses its
reliability after a period of time. If the zero point has shifted signi­
ficantly, then systematic errors are introduced into the measure­
ments which may not be evident. For this reason, frequent calibra­
tion of the instrument is recommended in any automatic monitoring
system. Asymmetrical ice coating can change the response charac­
teristic of the instrument. Thus, data obtained when icing occurs
may have systematic errors (Alexeiev et al., 1974). Sheltering effects
due to the location of the instrument can also introduce systematic
errors. It has been observed that there is a significant reduction
in the measured wind speed when the anemometer is located close
to the tower structure (Angell et al., 1976, and Wieringa, 1976).
Other causes of systematic errors are improper leveling of the wind
direction transmitter, faulty potentiometers, improper conversion
of the output signal, and misalignment of instruments. The latter can
introduce systematic errors into the measurements after a certain
period of time. It has been observed that aerodynamic lifting due
to the orientation of the bivane tail as it is mounted on the wind
sensor can cause an appreciable error in the elevation angle measure­
ments after the tail had deteriorated (Pendergast, 1975).

This paper is concerned only with the detection Of outliers in
micrometeorological time series after first screened for gross errors
by simple deterministic tests. Methods for detecting systematic
errors or instrumental drift involves modelling the time series with
stochastic time-varying parameters, and are beyond the scope of this
study.

2. Review of Literatures on Detection of Outliers in Time Series

• There seems to be a lack of publications on the detection of
• outliers in time series. In recent years, time series is increasingly
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becoming an important area of applied statistics especially in the
physical sciences, where for a long time CUlVe fitting by ordinary
least squares was the most frequently used (or "abused") method of
statistical analysis. Unfortunately, a time series is more outlier prone
than a random sample and the problem of outlier detection is more
difficult to handle.

Probably, the first to consider the problem of outliers in time
series was Fox (1972). He considered two types of outliers that may
occur in a time series and named them type I and type II. A type I
outlier corresponds to a gross error in which the error affects only a
single observation. Let the time series be represented by the pth
order autoregressive model

CXo Z + CX I Zt _ I + CX2 Zt _ 2 + ... + CXp Z t _ p = e t , t = p + 1.... ,N,

where the e/s are independently and normally distributed random
variables with mean 0 and variance 0 2 . Due to the presence of an
outliers in the qth observation, the observed time series Yt is such
that

•
•

•
t' if t * q

Y
t

= Zq'+ [)
if t =q •

On the other hand, a type II outlier corresponds to an extreme
value. The error [) affects not only the observation Yq , but also the
subsequent observations Yq + I, ... , YN' The pth order autoregres­
sive model representation of the observed time series Yt is

CXo Yt + cxI Yt - 1 + CX2 Yt - 2 + ... + CXp Yt - p + [) t = e.,

t=p+ 1, .. .,N,

where

S, = {:
if t * q

if t = q

and the er's are independently and normally distributed with mean •
o and variance 0 2 . Four situations are possible, namely: the outliers •
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are all of type I, the outliers are all of type II, all of the outliers are
of the same but unknown type, and the outliers are a mixture of
both types. The author then derived likelihood ratio and approx­
imate likelihood criteria for testing whether a particular observation
is an outlier.

Abraham and Box (1975, 1976) approached the problem of
outliers in time series by the non-classical Bayesian method. First,
the authors considered two situations: (I) there is no specific
information to distinguish the degree of goodness of one observation

• from another, but there is a general possibility that r ~ I of the
observations may be an outlier; (2) there is information that r

• specific observations obtained under known conditions are outliers,
but the extent of their distributions is unknown. They listed two ob­
jectives: (1) to make inferences about the parameters of the model
in the possible presence of outliers, and (2) to determine whether a
particular observation is an outlier and estimate its deviation from
expectation for a good observation. Finally, they characterized
the outlier problem by two models in the context of the pth order
autoregressive process. The first, called the aberrant innovation

• model, is given by

• where

.-

••

if t = q 1, . . . , q,

otherwise

and the er's are independently and normally distributed random
variables with mean 0 and variance a2 _ In this model, the error 0
stays in the process through time t = q1 , . . . , q" where q1 , .•. ,

q, or r may not be known. Now, the second, called the aberrant
observation model, is given by

where Z, is the time series and the e/s are independently and
normally distributed random variables with mean 0 and variance



68 RUDY S. TAN ••a2 • The observed time series Yt in the presence of outliers can be
written as

ift=ql"" .q,

otherwise

Here, the error may be thought of as an observational error having
an immediate effect only on Yt at t =q l' ... , q" where q1 , ... ,

qr or r may not be known. These two models are analogous to the
two types of outliers proposed by Fox. The different situations,
objectives, and model characterizations of Abraham and Box may
be combined to give eight different outlier problems.

It is assumed before applying the method of Fox or Abraham
and Box that any trend or seasonal variation is either negligible or
has been removed. This assumption requires that the deterministic
trend component of the time series is removed by a robust method,
i.e., one that is not easily influenced by the presence of outlying
observations. The conventional method of ordinary least squares is
not robust. Minimizing the sum of the absolute values of the errors
is probably the only robust method of regression in the technical
sense of the word. However, this method requires the use of linear
programming which is not feasible when the number of observations
is large. The various methods for multiple linear regression (see,
for example, Andrews, 1974, or Hinich and Talwar, 1975) are not
applicable to time series since the data is decimated by removing
all observations which are suspected as outliers. In a time series,
the residuals have autocorrelation structure and it would not be
advisable to discard any observation without first imputing its value
by some means. Roughan and Evans (1970) proposed to fit a trend
curve to a time series in the presence of outliers by an iterative
scheme. Their criterion for fitting is simply having an equal number
of observations on either side of the curve for all the segments into
which the time series was arbitrarily divided. Although the method
appears to be robust, it has no statistical basis and the algorithm is
not entirely satisfactory. In addition to the problem of trend in the
time series, the method of Fox or Abraham and Box assumes that
the outliers all belong to the same population and that the error
a is a constant. This assumption may be true with some physical
data, but in general it will not be.
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3. A Regression Method for Detecting Outliers in Time Series

The two method for detecting outliers discussed in the previous
section have been found impractical for screening large masses of
micrometeorological data due to the problem of trend in the data
and the complex computations involved. For example, the posterior
distribution of the autoregressive parameters given the observations,
in the aberrant innovation model of Abraham and Box, is a weighted
average of multivariate t-distributions whose exact evaluation is com­
putationally difficult. Therefore, a method is developed in this
study which is based entirely on multiple linear regression analysis.
This commonly employed statistical analysis is readily adaptable to
time series modelling and efficient computer programs are available
even in some textbooks in statistics (e.g., Burford, 1970).

3.1. The Model

In order to avoid the problem of first removing any trend in the
data before modelling the time series, the following second-order
autoregressive model with a trend line is considered:

Yt=lJ+at+PIYt-1 +132Yt-2+et, t =3, ... ,N (3.1)

where the et are normally and independently distributed random
variables with mean 0 and variance 0 2 • The proposed model is simply
a reparameterization of the following simple linear model with
autocorrelated errors:

Yt = IJ* +a*t+Zt, t= 3, ... ,N,

• IJ * = IJ 0-131 -(32) -a (131 + 2(32)

(1-131-132)2
(3.2)

a* = (3.3)

•.. It is assumed that the parameters of the model IJ ,a, 132 and 13 are
fixed constants, and the roots of the characteristic equation m2



{3I m - {32 =0 are less than one in absolute value. The second assump­
tion is satisfied if Z, is a stationary time series.

The (N - 2) equations in (3.1) can be written in matrix form as
follows:

70 RUDY S. TAN •..

Y = ~~+~,

where

r = (Y3 ' ... , YN)'

3 Y2 YI

X =-
N YN - I YN - 2

0' = (p., ex, (3I , (32),

and

e' = (e3, ... ,eN ) ·

The ordinary least squares estimator of! is .

..
(x'x)- I x'Y"0 =
"'-' -.." "'-',...,.,

= () + (X'X)-I x'e .- -- --
Clearly, 8 is a biased estimator of 0 since ~ [(X'X)- I x' e1* 0 because
e, t =f-...,N, are not independent of Yt fort - f-:--..,N. Indeed
the small sample distribution of 8 has not yet been obtained. How­
ever,l is consistent and asymptotically normal, i.e.,

plim ~ = 0

and
...;nc!-f) '" N C!, Q- I a~),

where g= plim _1 (X'x)
.- LV --
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and plim denotes limit in probability (see Fuller, 1976; Section 8.2).
In other words, if the sampling time is sufficiently long, the distri­
bution of 9 would be approximated by a normal distribution with
mean 9 aOd variance Q- l oe2/N. This implies that it is reasonable

'"
to employ multiple regression to estimate the parameters of the
model (3.1) and also that the usual tests of significance are not too
misleading.

The choice of the model was based on the fact that micro­
meteorological variables like temperature, wind speed, and wind
direction angles recorded at short intervals of time (5 seconds or less)
display strong persistence, and when the sampling time is long
(l hour or more) a "trend" in the mean may exist. After examining
several correlograms from the pilot data used in this study, it was
evident that the second-order autoregressive model would adequately
represent the observed time series of temperature, wind speed,
azimuth, and elevation angle under the atmospheric conditions
encountered. This model has been widely used to describe various
time series in practice (Stralkowski, et. al., 1970).

The deterministic linear trend in the model is to take into ac­
count any change in the level of the time series due to diurnal
variations. The slope of the trend line is significant only during cer­
tain periods. During most of the day and night, the mean of the
process generating the time series is generally constant. A straight
line trend was found satisfactory in describing the mean of the
process up to three hours sampling time. However, a more flexible
trend curve would have to be considered if the time duration was
much longer.

3.2. The Screening Procedure

The steps in screening the data for outliers are as follows:

1. The parameters u ; a, {3I, and (32 in the model (3.1) are esti­
mated by the method of ordinary least squares,

2. Let Yt be the predicted value of Yt. ;t = Yt - Yt be the resi­
dual, and a: be the estimated mean square error,

3. If letl > 6c1e , then Yt is replaced by Yt and this new value
used to predict Yt + l . The rejection criterion 6 is predetermined.

4. After all the suspected outliers have been replaced by their
predicted values, the parameters in the model are reestimated using
the recently created data set .
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5. Now, using the revised estimates of the parameters in the

model and mean square error, steps 2, 3, and 4 are repeated using the
original observations.

6. Finally, the cycle is terminated when a certain number of
iterations is reached, or if

I~e (i) - ; e (i - 1) I :s;;;; k,

where cre{i) is the value for cre in the ith iteration and k is a specified
small number.

Note that the predicted value of Yt is a weighted linear combi­
nation of "good" observations and the weights are the coefficients...
of the autoregressive model. Although Yt may not be very close to
the true value of Yt , it will at least minimize the influence of the
suspected observation. In order to start the prediction, it is required
that the first two observations are not outliers.

3.3. Estimates of the Model Parameters

The estimates of the parameters u, ex, 131 and 132 in (3.1) are
obtained directly from the computer output of a multiple linear
regression program. However, the degrees of freedom for the esti­
mated mean square error a; has to be corrected for the number
of outliers. Thus

•
•

•

•
SSE

N-M-6 (3.4)

where SSE is the error sum of squares, N is the number of obser­
vations, M is the number of outliers, and 6 is the number of para­
meters in the model [4] plus the number of observations deleted.
The standard errors of the estimated coefficients are obtained by •
multiplying ~t by the positive square-root of the diagonal elements
in the (i~.t 1 matrix. Specifically, the standard errors of the esti-
mated autoregressive coefficients 131 and 132 , are respectively,

SE(P1) =;e 0i33

and 8E(I32) = ~e va44 '

where a33 and a44 are the 3rd and 4th diagonal elements in the •
(i~r 1 matrix. To test the hypothesis that 132 = 0 i.e., the time •
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series is a first-order autoregressive process, the following t-statistics

is computed.

From (3.2) and (3.3), the estimates of the trend line coefficients
JJ. * and a* are, respectively,

•
•

and

f1 * =
ii(l-al~2) - eX (~1 + 2~2)

(l - /3"1 - P2)2

ex
&* - -----

1-~·1 - ~2

•

•

•

••

Unfortunately, the variances of 11* and ex* involve nonlinear com­
binations of the estimates 11, eX, PI ,and 132 which are mathematically
intractable. Therefore, an indirect approach has to be considered in
order to obtain the standard errors of 11* and &*. Durbin (1960)
has suggested a two-state procedure to estimate JJ. * and ex* which
will give estimates with asymptotically the same mean vector and
dispersion matrix as the OLS estimates obtained by the direct mini­
mization of 1: el in (3.1). The procedure is as follows: After estimat­
ing" the autoregressive parameters 131 and 132 in (3.1) by OLS, the
transformed variables

and

are computed. Then, Wt is regressed on a column of l's and T,
giving the following estimates of JJ. * and ex*:

N N
1: Wt - Ii· 1: T;

t= 3 t =3
P.* =
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N N
(N-2) r, Tf - (z Tt )2

t= 3 t= 3

•••

These estimates are equivalent to (3.5) and (3.6), respectively. Thus,
the approximate standard errors of the trend line coefficients are
simply the following:

N
r, r.2 •6'e t =3 t

SE (,i*) •I-Pl-r32

N N
(N-2) r, T; - ( r, Tt )2

t=3 t= 3

and

SE(&*) N-2
=

N N
(N-2) r, TJ. - ( r, T )2

t=3 t t=3 t •
3.4 Measure ofModel Adequacy

It is possible that the model (2.1) does not provide an adequate
fit to the observed time series. This will result either in the rejection •
of unusual number of "outliers" with some good observations
among them, or not detecting the really outlying observations. One
way to measure the adequacy of the model is to construct an index
based on the autocorrelations of the residuals. Theoretically, if the
fit of the proposed model is the appropriate one, the residuals should
just be "white noise" with autocorrelations equal to zero for all
lags greater than or equal to 1. Such an index is proposed in this •
study and is given by

L
G = 1 - r, r~ ,

h =1

where rh =-----
N
r,et2

t= 3 ••
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Q=(N-2) (I-G)•
•

•

and L is the number of sample autocorrelations. Clearly, if the fit is
perfect, G = 1. However, L is seldom equal to 0 since the

1; r 2
h = Ih

residuals from a fitted model tend to be slightly autocorrelated.
Box and Pierce (1970) have suggested a statistic to test the small­
ness of L . This is the Qstatistics and is related to G as follows:

1; r2
h =1 h

The distribution of Q is approximately a chi-square with (L-4)
degrees of freedom. Box and Jenkins (1976) refer to Q as the "por­
manteau" lack-of-fit test statistic. A significant value of Q. would
indicate that the fitted model is not adequate and may not be satis­
factory for screening the data for outliers. This test is valid only if
L is at least 20. Chatfield and Prothero (1973) showed that Q is not
a very powerful statistic for detecting specific departures from white
noise behavior in the residuals. Nevertheless, it is a useful diagnostic
check on the adequacy of the model to represent the data.

4. Application

• 4.1 Some Aspects a/the Computer Program

The basic computer program for the screening procedure was
written in Fortran IV level G. For the purpose of this study, linkage
routines were added to the program so that the procedure will inter-
face with the Statistical Analysis System (SAS). The procedure was
given the name SCREEN and its SAS implementation is discussed
in Appendix 1.

•

••

To test the procedure, several artificial time series were generated
and bad observations introduced. One example is discussed here. The
observations were generated from the model Yt = 270.00 + 0.05t
+ Z, where Z, =0.5Z t_ 1 + O.lZt_ 2 + er, where et is N(O,I). Seven
observations were replaced by values whose magnitude was ± 80e

from the mean. All of the 7 outliers were detected and also the true
values of the parameters were within less than 2 standard errors
of the estimates (see Fig. I). The plots of the 200 observations
together with their upper and lower control limits, adapting the
terminology in industrial quality control, are presented in Fig. 2 .
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NO. OF OBSERVATIONS = 200

NO. OF ITERATIONS = 4

NO. OF OUTLIERS 7

•..

T YBAD YHAT EHAT

48 278.00000 272.69653 5.30347
49 278.00000 272.65082 5.34918
50 278.00000 272.69283 5.30717
51 278.00000 272.72194 5.27806 •160 270.00000 277.45851 -7.45851

161 270.00000 277.68024 -7.68024 •162 270.00000 277.78203 -7.78203

COEFFICIENTS OF STANDARD
THE TREND LINE ERRORS T-VALUES

270.29603 0.34017 794.59509
0.04707 0.00288 16.32333

COEFFICIENTS OF STANDARD
THE AUTOREG. MODEL ERRORS T-VALUES

0.39172 0.07154 5.45258 •_ 0.17220 0.07156 2.40641

CHARACTERISTIC ROOTS
0.65473
0.26301 •MEAN SQUARE ERROR DEGREES OF FREEDOM

1.02294 187
MEAN APPROXIMATE STD ERROR

M1 = 275.05854 0.16483
STANDARD DEVIATION APPROXIMATE STD ERROR

SD1 = 1.16940 0.08027
SD2= 1.16549

Ml IS SIMPLE MEAN COMPUTED FROM THE DATA AFTER REPLACING •
THE OUTLIERS BY THEIR PREDICTED VALUES.

SOl IS COMPUTED FROM THE DATA AFTER REMOVING THE TREND
AND REPLACING THE OUTLIERS BY THEIR PREDICTED VALUES.

SD2 IS COMPUTED FROM THE COEFFICIENTS OF THE FITTED SECOND­
ORDER AUTOREGRESSIVE MODEL.

DEGREES OF FREEDOM = NO. OF OBSERVATIONS - NO. OF PARA­
METERS - NO. OF OUTLIERS - 2

Fig.I Results of procedure SCREEN using 200 observations •
with 7 outliers generated from the model Yt = 108.035 + 0.02t + •
0.5 Yt-1 +0.1 Yt-2 +et, whereet-N(O, I).
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•• FIG. 1 (Continued)

NOTE: EACH POINT CORRESPONDS TO 1 LAG

MEASURE OF MODEL ADEQUACY

G = 0.68411
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CHISQUARE = 83.1777 DF = 46
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e. • • • • • ••



•• DETECTING OUTLINERS ... 79

•
•

•

•

•

••

The rejection criterion used for this example was 3.5. Assuming that
the et's are independently and normally distributed random variables
with mean 0 and variance 1, only values really far outside the 99.9%
confidence limits of the predicted values of Yt were replaced as
outliers.

Presented in Fig. 3, 4, 5, and 6 are the results from procedure
SCREEN compared with that of procedure GLM and AUTOREG
using actual data*. The last two procedures are described in SAS76
(Barr et al., 1976). The observations were temperature measurements
from the 5th level of the WJBF TV tower taken on April 5, 1976
at 1400H, EST (Eastern Standard Time).

Wind speed measurements from the SRL TV tower taken at the
same time and level as the temperature measurements were used in
the example in Appendix 1. Here, the rejection criterion used was
4.5 and 5 outliers were detected. The measure of model adequacy
was G = 0.91, which is very high. Also, the computed chi-square
was 64.56. This can be compared with the tabulated chi-square
values for 46 degrees of freedom which are 62.8 and 71.2 at 5%
and 1% levels of significance, respectively. Thus, it can be con­
cluded at the 1% level of significance that there is no evidence to
reject the hypothesis that the model provides an adequate represen­
tation of the behavior of the observed time series.

4.2 Outlier Rejection Rates of the SRL Micrometerological
Data

Two days of temperature and wind speed measurements from the
TV tower and about three days of wind speed, azimuth and elevation
angle measurements from the 7 SRL towers were screened for
outliers. The total number of observations screened was 1,496,800.
This is equivalent to 2,079 data-hours. Each data-hour consists of
720 observations since the sampling interval was 5 seconds.

Presented in Table 1 are the percentage distributions of outliers
in the hourly measurements of temperature and wind speed from the
TV tower based on 336 data-hour each. The percentage of hourly

*The data for this study were provided by the Savannah River Laboratory (abbreviated
SRL) of E.l. duPont de Nemours and Company at Aiken, South Carolina, U.S.A. Measure­
ments on temperature, wind speed, azimuth and elevation angles were obtained from 7
meteorological towers within the Savannah River Plant Site and from 7 levels of the instru­
mented WJBF television tower located about 21 kilometers away. Hereafter, the 7 towers
will be simply referred to as the SRL towers and WJBF television tower as the T.V. tower .
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Y6

NO. OF OBSERVATIONS

NO. OF ITERATIONS

NO. OF OUTLIERS

720

= I

= 0

••

COEFFICIENTS OF
THE TREND LINE

16.24188

0.00504

COEFFICIENTS OF
THE AUTOREG MODEL

0.54432
0.30756

CHARACTERISTIC ROOTS

0.88992

-0.34560

STANDARD
ERRORS

0.04560

0.00011

STANDARD
ERRORS

0.03554
0.03552

T-VALUES

356.20807

46.77785

T-VALUES

15.31710
8.65809

•
•

•MEAN SQUARE ERROR

0.00784

MEAN

Ml = 18.06344

DEGREES OF FREEDOM

714

APPROXIMATE STD ERROR

0.02232
•

STANDARD DEVIATION APPROXIMATE STD ERROR
SOl = 0.15049 0.01075

SD2 = 0.15059

Ml IS SIMPLE MEAN COMPUTED FROM THE DATA AFTER REPLACING •
THE OUTLIERS BY THEIR PREDICTED VALUES.

SDIIS COMPUTED FROM THE DATA AFTER REMOVING THE TREND
AND REPLACING THE OUTLIERS BY THEIR PREDICTED VALUES.

SD21S COMPUTED FROM THE COEFFICIENTS OF THE FITTED SECOND­
ORDER AUTOREGRESSIVE MODEL.

DEGREES OF FREEDOM = NO. OF OBSERVATIONS - NO. OF
PARAMETERS - NO. OF OUTLIERS - 2

Fig. 3 Results of procedure SCREEN on one hour of windspeed
measurements from the TV tower
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FIG. 3 (Continued)
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STATISTICAL ANALYSIS SYSTEM

GENERAL LINEAR MODELS PROCEDURE

00
N

R-SQUARE

0.993004

DEPENDENT VARIABLE: Y6

SOURCE

MODEL

ERROR

CORRECTED TOTAL

SOURCE

T

YLAG I

YLAG2

DF

3

714

717

DF

I

I

I

SUM OF SQUARES

794.95441181

5.60059112

800.55500293

TYPE I SS

784.38790756

9.97850182

0.58800244

MEAN SQUARE

264.98480394

0.00784397

FVALUE

99998.90

12:72.12

74.96

FVALUE

33782.00

PR>F

0.0001

0.0001

0.0001

DF

I

I

I

PR>F

0.0001

STDDEV

0.08856616

TYPE IV SS

0.30982993

1.84030093

0.58800244

FVALUE

39.50

234.61

74.96

C.V.

0.4903

Y6MEAN

16.663440II

PR>F

0.0001

0.0001

0.0001

PARAMETER

INTERCEPT

T

YLAG I

YLAG2

ESTIMATE

2.41155179

0.00074596

0.54432019

0.30756200

p..

TFOR~O:

PARAMETER = 0

4.37

6.28

15.32

8.66

P(l-PI~)-(j(t!1 + 2~2)

O..§1;2)2

PR>ITI

0.0001

0.0001

0.0001

0.0001

STD ERROR OF
ESTIMATE

0.37855109

0.0001869

0.03553676

0.03552311

:::tl
§
-<
~
....,
:>z

2.411 55 179(1-0.5443201 9-0.30756200) -0.00074596(0.54432019 + 2 x 0.30756200)

(1-0.54432019-0.30756200)2

16.241885..
0(* ex

= lAth
0.00074596

1-0.54432019-0.30756200
= 0.005036

Fig. 4 Checks on the values of jl. and ot" using procedure GLM.
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STATISTICAL ANALYSIS SYSTEM

GENERAL LINEAR MODELS PROCEDURE

Y,-o.5443 20 19Yl_t-0.30756200Y1-2

1 -0.54432019(1-1)-,0.30756200 (1-2)

t:l

~
~...,-Z
CJ
o
~
r--Z
tTl
:::0
til

C. V.

3.2986

WMEAN

2.68121487

PR>F

0.0001

FVALUE

2194.30

R-SQUARE

0.763977

. cf

PR>F

0.0001

STD DEV

0.08844236

TYPE IV SS

17.16395245

SE (a)

I-al-t32

0.00674422 ~
1-0.54432019-0.3075620~ 714

0.045597

SE (b). cf

0.0001075 I J716
• 714

0.000107

FVALUE

2194.30

SE(~) =

SE ()1.) =

PR>F DF

0.0001 I
STD ERROR OF

ESTIMATE

0.00674422

0.0001075 I

MEAN SQUARE

17.16395245

0.00782205

0.0001

0.0001

a

2.40571266

I-Ifl-~

1-0.54432019-0.30756200

16.241885

b

0.005036

SUM OF SQUARES

17. 16395245

6.60059112

22.76454357

TYPE I SS F VALUE

17.16395245 2194.30
TFORHO: PR>ITI

PARAMETER = 0

356.71

46.84

?

x

DF

I

716

717

DF

I
ESTIMATE

~

W

2.40571266

0.00503623

INTERCEPT

X

DEPENDENT VARIABLE:

SOURCE

MODEL

ERROR

CORRECTED TOTAL

SOURCE

X
PARAMETER

Note: The correction factor denoted by cf is to adjust the estimated mean square
error fOI 2 degrees of freedom in estimating (11 and fJ2.

Fig. 5 Cbecks on the values of SE w·) and SE (Q") using procedure GLM.
00
W
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o
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STATISTICAL ANALYSIS SYSTEM

AUTOREGPROCEDURE

DEPENDENT VARIABLE = Y6

ORDINARY LEAST SQUARES ESTIMATES

VARIABLE, DF B VALUE

INTERCPT 1 16.24048
r 1 0.005042778

ESTIMATES OF AUTOCORRELATIONS

COVARIANCE CORRLEATION -1 9 8 7 6 5 4 3

0.0225168 1.000000
0.0176827 0.785510
0.016561 0.785495

PRELIMINARYMSE = 0.007801557

ESTIMATES OF THE AUTOREGRESSIVE PARAMETERS

LAG COEFFICIENT STD DEVIATION T RATIO

1 -0.54193768 0.035482 -15.273450
2 -0.30990600 0.035482 -8.734100

DF SUM OF SQUARES MEAN SQUARE F RATIO APPROX PROB

1 18.30294 18.30296 2341.93 0.0001
716 5.595777 0.097815331

TOTAL 717 23.89874 0.03333157 RSQUARE=0.7659

•• ·1

00
~

:::tlc::e
...:::
~

.-.j
;I>
Z

Fig. 6 Checks on the values of PI and th. using procedure AUTOREG.

e.

VARIABLE DF

INTERCPT 1

T 1

•

B VALUE

16.2431993473

0.0050335229

•

STD DEVIATION

0.043575476266

0.000104012340

•

T RATIO APPROX PROB

372.734 0.0001

48.393 0.0001

• • ••



•• DETECTING OUTLINERS ...

TABLE I

PERCENTAGE DISTRIBUTIONS OF OUTLIERS IN HOURLYMEASURE·
MENTS OF TEMPERATURE ANDWIND SPEED FROMTHE TV TOWER.

85

Number of
Outliers

0

1• 2

• 3

4

5

6-10
11-30

31-50

>50

•

Temperature

76.8

7.7

3.6

1.2

1.5

o
4.2
2.7

0.9

1.5

Wind Speed

63.1

18.4

6.3

3.3

2.1

0.9

4.5
0.9

o
0.6

•

••

TABLE 2

PERCENTAGE DISTRIBUTIONS OF OUTLIERS IN HOURLY MEASUREMENTS
OF WIND SPEED, AZIMUTH AND ELEVATION ANGLES

FROMTHE 7 SRL TOWERS.

Number of Wind Azimuth Elevation
Outliers Speed Angle Angle

0 81.7 53.3 51.6

1 9.0 12.2 23.2

2 1.7 6.8 9.4

3 2.6 4.3 6.8

4 0.2 2.1 2.1

5 0.2 0.6 1.3

6-10 0.4 4.9 1.9

11-30 1.3 5.8 1.1

31--50 0.4 3.2 0.2

> 50 2.6 6,8 2.4
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measurements with at least one outlier was 37% for wind speed
compared to only 23% for temperature. The percentage of wind
speed data with 1 to 5 outliers rejected was about twice that
for temperature. Data with rejection rates of more than 7% (con­
taining at least 50 outliers) were less than 1%for wind speed and less
than 2% for temperature.

The percentage distribution of outliers in the hourly measure­
ments of wind speed, azimuth and elevation angles from the 7 SRL
towers are presented in Table 2. The number of data-hours for each •
distribution is 469. Almost 50% of the wind azimuth and elevation
angle hourly data have at least one outlier compared to only about •
18% for wind speed. The percentage of elevation angle with low
rejection rates (between 1 to 5 outliers rejected) was higher than
for the wind azimuth angle. However, the wind azimuth angle-have
higher percentage with more than 50 outliers rejected.

5. Conclusions

The regression method for data quality control proposed in
this study had been found satisfactory for screening the SRL tower
measurements. When really "bad" observations were few and scat­
tered, they were detected most of the time and imputed by some
reasonable values based on the fitted second-order autoregressive
model. However, in situations where there was a long run of bad
observations, or the wind azimuth angle shifted level by more than
90°, the method was only useful for indicating that there was some­
thing wrong with the data. The indications were the unusually high
outlier rejection rates (more than 50%) and obviously wrong esti­
mates of the model parameters and other statistics. The hourly SRL
measurements sampled every 5 second used in this study have mostly
very low outlier rejection rates (1 to 5 outliers rejected per 720
observations).
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